题目内容

7.已知a,b,c是△ABC的三边长,方程$\frac{27}{4}$x2+3(a+b+c)x+(a2+b2+c2)=0有两个相等实根,请判断△ABC的形状.

分析 由已知可得△=0,从而化简解得∴(a-b)2+(a-c)2+(b-c)2=0,即可解得:a=b=c=0.

解答 解:∵方程$\frac{27}{4}$x2+3(a+b+c)x+(a2+b2+c2)=0有两个相等实根,
∴△=[3(a+b+c)]2-4×$\frac{27}{4}$×(a2+b2+c2)=9(a+b+c)2-27(a2+b2+c2)=0,
∴(a+b+c)2=3(a2+b2+c2),
∴解得:ab+ac+bc=a2+b2+c2
∴2a2+2b2+2c2=2ab+2bc+2ac,
a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,
∴(a-b)2+(a-c)2+(b-c)2=0,
∴a=b=c.
∴△ABC是等边三角形.

点评 本题主要考查了一元二次方程的解法,考查了三角形的形状判断,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网