题目内容

若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],求该函数的解析式.
分析:由f(x)=(x+a)(bx+2a)是偶函数,知f(-x)=(-x+a)(-bx+2a)=f(x)=(x+a)(bx+2a),故2ax+abx=0,a=0或2+b=0.由此能求出f(x)的解析式.
解答:解:∵f(x)=(x+a)(bx+2a)是偶函数,
∴f(-x)=(-x+a)(-bx+2a)=f(x)=(x+a)(bx+2a),
∴bx2-2ax-abx+2a2=bx2+2ax+abx+2a2
∴2ax+abx=0,即ax(2+b)=0恒成立,
∴a=0或2+b=0.
若a=0,则f(x)=bx2,若b>0,值域是y≥0,b<0,值域是y≤0,都不是(-∞,4],
所以a≠0,故b+2=0,
∴b=-2,
所以f(x)=-2x2+2a2
∵-2x2≤0,
所以值域是f(x)≤2a2
∴2a2=4,
即f(x)=-2x2+4.
点评:本题考查二次函数的性质和应用,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网