题目内容

已知函数(其中为常数);
(Ⅰ)如果函数有相同的极值点,求的值;
(Ⅱ)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(Ⅲ)记函数,若函数有5个不同的零点,求实数的取值范围.
(Ⅰ)(Ⅱ)(Ⅲ)

试题分析:(1)对函数f(x)求导可得,由,可得得,而处有极大值,从而可得a;(2)假设存在,即存在x∈(?1,),使得f(x)-g(x)>0,由x∈(?1,),及a>0,可得x-a<0,则存在x∈(?1,),使得,结合二次函数的性质求解;(3)据题意有f(x)-1=0有3个不同的实根,g(x)-1=0有2个不同的实根,且这5个实根两两不相等.g(x)-1=0有2个不同的实根,只需满足⇒a>1或a<?3;有3个不同的实根,从而结合导数进行求解.
试题解析:(Ⅰ),则
,得,而处有极大值,∴,或;综上:.               (3分)
(Ⅱ)假设存在,即存在,使得

时,又,故,则存在,使得, (4分)
时,;      (5分)
时,,  (6分)
无解;综上:.                                   (7分)
(Ⅲ)据题意有有3个不同的实根,有2个不同的实根,且这5个实根两两不相等.
(ⅰ)有2个不同的实根,只需满足;   (8分)
(ⅱ)有3个不同的实根,
时,处取得极大值,而,不符合题意,舍;    (9分)
时,不符合题意,舍;
时,处取得极大值,;所以;  (10分)
因为(ⅰ)(ⅱ)要同时满足,故;(注:也对)      (11分)
下证:这5个实根两两不相等,即证:不存在使得同时成立;
若存在使得
,即,得
时,,不符合,舍去;
时,既有  ①;
又由,即 ②;   联立①②式,可得
而当时,没有5个不同的零点,故舍去,所以这5个实根两两不相等.
综上,当时,函数有5个不同的零点.          (14分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网