题目内容
若函数f(x)=(x+a)(bx+2a)(常数a、b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=分析:利用函数的定义域、值域的特点得到函数是二次函数;据函数是偶函数关于y轴对称及二次函数的对称轴公式得到方程求出a,b的值;将求出的值代入二次函数解析式求其值域验证值域是否是(-∞,4].
解答:解:由于f(x)的定义域为R,值域为(-∞,4],
可知b≠0,∴f(x)为二次函数,
f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.
∵f(x)为偶函数,
∴其对称轴为x=0,∴-
=0,
∴2a+ab=0,∴a=0或b=-2.
若a=0,则f(x)=bx2与值域是(-∞,4]矛盾,∴a≠0,
若b=-2,又其最大值为4,
∴
=4,∴2a2=4,
∴f(x)=-2x2+4.
故答案为-2x2+4
可知b≠0,∴f(x)为二次函数,
f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2.
∵f(x)为偶函数,
∴其对称轴为x=0,∴-
2a+ab |
2b |
∴2a+ab=0,∴a=0或b=-2.
若a=0,则f(x)=bx2与值域是(-∞,4]矛盾,∴a≠0,
若b=-2,又其最大值为4,
∴
4b×2a2 |
4b |
∴f(x)=-2x2+4.
故答案为-2x2+4
点评:本题考查偶函数的图象特点、二次函数的对称轴公式、二次函数值域的求法.
练习册系列答案
相关题目
若函数 f(x)=a x (a>0,a≠1 ) 的部分对应值如表:
x | -2 | 0 |
f(x) | 0.592 | 1 |
则不等 式f-1(│x│<0)的解集是 ()
A. {x│-1<x<1} B. {x│x<-1或x>1}
C. {x│0<x<1} D. {x│-1<x<0或0<x<1}