题目内容

(2007•广州一模)已知圆C:x2+y2-2x-2y+1=0,直线l:y=kx,且l与C相交于P、Q两点,点M(0,b),且MP⊥MQ.
(Ⅰ)当b=1时,求k的值;
(Ⅱ)当b∈(1,
32
),求k的取值范围.
分析:(Ⅰ)当b=1时,点M(0,b)在圆C上,当且仅当直线l经过圆心C时,满足MP⊥MQ.把圆心坐标(1,1)代入直线l:y=kx,可得k的值.
(Ⅱ)把直线l的方程代入圆的方程转化为关于x的一元二次方程,利用根与系数的关系以及
MP
MQ
=0
,求得
2k(1+k)
1+k2
=b+
1
b
.令f(b)=b+
1
b
,则f(b)
在区间(1,
3
2
)
上单调递增,求得f(b)∈(2,
13
6
)
,可得 2<
2k(1+k)
1+k2
13
6
,解此不等式求得k的取值范围(注意检验△>0).
解答:解:(Ⅰ)圆C:(x-1)2+(y-1)2=1,当b=1时,点M(0,b)在圆C上,
当且仅当直线l经过圆心C时,满足MP⊥MQ.…(2分)
∵圆心C的坐标为(1,1),∴k=1.…(4分)
(Ⅱ)由
y=kx
x2+2-2x-2y+1=0
,消去y得:(1+k2)x2-2(1+k)x+1=0.①
设P(x1,y1),Q(x2,y2),
x1+x2=
2(1+k)
1+k2
x1x2=
1
1+k2
.…(6分)
∵MP⊥MQ,∴
MP
MQ
=0

∴(x1,y1-b)•(x2,y2-b)=0,即 x1x2+(y1-b)(y2-b)=0.
∵y1=kx1,y2=kx2
∴(kx1-b)(kx2-b)+x1x2=0,即(1+k2)x1x2-kb(x1+x2)+b2=0.…(8分)
(1+k2)•
1
1+k2
-kb•
2(1+k)
1+k2
+b2=0
,即
2k(1+k)
1+k2
=
b2+1
b
=b+
1
b

f(b)=b+
1
b
,则f(b)在区间(1,
3
2
)
上单调递增.
∴当b∈(1,
3
2
)
时,f(b)∈(2,
13
6
)
.…(11分)
2<
2k(1+k)
1+k2
13
6

2k(1+k)>2(1+k2
2k(1+k)<
13
6
(1+k2
,解得
k>1
k>6+
23
 ,或k<6-
23

1<k<6-
23
k>6+
23
.…(13分)
由①式得△=[2(1+k)]2-4(1+k2)>0,解得k>0.
1<k<6-
23
,或k>6+
23

∴k的取值范围是(1,6-
23
)∪(6+
23
,+∞)
.…(14分)
点评:本题主要考查直线和圆相交的性质,一元二次方程根与系数的关系,利用函数的单调性求函数的值域,一元二次不等式的解法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网