题目内容
若函数y=f(x)是定义在R上的可导函数,则f′(x0)=0是x0为函数y=f(x)的极值点的( )
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
如y=x3,y′=3x2,y′|x=0=0,但x=0不是函数的极值点.
若函数在x0取得极值,由定义可知f′(x0)=0
所以f′(x0)=0是x0为函数y=f(x)的极值点的必要不充分条件
故选B
若函数在x0取得极值,由定义可知f′(x0)=0
所以f′(x0)=0是x0为函数y=f(x)的极值点的必要不充分条件
故选B
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目