搜索
题目内容
已知函数
,
.
(Ⅰ)设
(其中
是
的导函数),求
的最大值;
(Ⅱ)求证:当
时,有
;
(Ⅲ)设
,当
时,不等式
恒成立,求
的最大值.
试题答案
相关练习册答案
(Ⅰ)
取得最大值
;(Ⅱ)见解析;(Ⅲ)整数
的最大值是
.
试题分析:(Ⅰ)通过求
的导函数处理函数的单调性,从而确定在
时,
取得最大值
;(Ⅱ)由(Ⅰ)可知当
时,
,从而有
.(Ⅲ)先由当
时,不等式
恒成立转化为
对任意
恒成立,设
,通过导函数求出
的单调性从而得出
,整数
的最大值是
.
试题解析:(Ⅰ)
,
所以
.
当
时,
;当
时,
.
因此,
在
上单调递增,在
上单调递减.
因此,当
时,
取得最大值
; 3分
(Ⅱ)当
时,
.由(1)知:当
时,
,即
.
因此,有
. 7分
(Ⅲ)不等式
化为
所以
对任意
恒成立.令
,
则
,令
,则
,
所以函数
在
上单调递增.因为
,
所以方程
在
上存在唯一实根
,且满足
.
当
,即
,当
,即
,
所以函数
在
上单调递减,在
上单调递增.
所以
.
所以
.故整数
的最大值是
. 13分
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
函数
,过曲线
上的点
的切线方程为
.
(1)若
在
时有极值,求
的表达式;
(2)在(1)的条件下,求
在[-3,1]上的最大值;
(3)若函数
在区间[-2,1]上单调递增,求实数b的取值范围.
已知函数
(1)当
时,求函数
的单调区间;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间。设
,试问函数
在
上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.
已知函数
.
(Ⅰ)当
时,求曲线
在点
处的切线方程;
(Ⅱ)当
时,若
在区间
上的最小值为
,求
的取值范围.
设函数
.
(1)若
,求
的单调区间;
(2)若当
时
,求
的取值范围
已知函数
,其中
是自然对数的底数.
(Ⅰ)求函数
的单调区间和极值;
(Ⅱ)若函数
对任意
满足
,求证:当
时,
;
(Ⅲ)若
,且
,求证:
已知
(1)若
时,求函数
在点
处的切线方程;
(2)若函数
在
上是减函数,求实数
的取值范围;
(3)令
是否存在实数
,当
是自然对数的底)时,函数
的最小值是3,
若存在,求出
的值;若不存在,说明理由.
已知函数
f
(
x
)=
a
ln
x
+
x
在区间[2,3]上单调递增,则实数
a
的取值范围是________.
函数
的单调减区间为
.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总