题目内容
【题目】已知函数f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0 , 函数g(x)=cos(ω0x﹣ )的单调递增区间为( )
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + , + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)
【答案】A
【解析】解:函数f(x)= sinωx﹣ cosωx(ω<0)=2sin(ωx﹣ ), 若y=f(x+ )的图象与y=f(x﹣ )的图象重合,
则 为函数f(x)的周期,即 =k| |,∴ω=±4k,k∈Z.
记ω的最大值为ω0 , 则ω0=﹣4,
函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).
令2kπ﹣π≤4x+ ≤2kπ,求得 ﹣ ≤x≤ ﹣ ,
故函数g(x)的增区间为[ ﹣ , ﹣ ],k∈Z.
故选:A.
利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.
【题目】某中学从高三男生中随机抽取100名学生,将他们的身高数据进行整理,得到下侧的频率分布表.
组号 | 分组 | 频率 |
第1组 | [160,165) | 0.05 |
第2组 | 0.35 | |
第3组 | 0.3 | |
第4组 | 0.2 | |
第5组 | 0.1 | |
合计 | 1.00 |
(Ⅰ)为了能对学生的体能做进一步了解,该校决定在第3,4,5组中用分层抽样的方法抽取6名学生进行体能测试,问第3,4,5组每组各应抽取多少名学生进行测试;
(Ⅱ)在(Ⅰ)的前提下,学校决定在6名学生中随机抽取2名学生进行引体向上测试,求第3组中至少有一名学生被抽中的概率;
(Ⅲ)试估计该中学高三年级男生身高的中位数位于第几组中,并说明理由.
【题目】某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.
高一学生学习时间的频数分布表(学习时间均在区间内):
学习时间 | ||||||
频数 | 3 | 1 | 8 | 4 | 2 | 2 |
高二学生学习时间的频率分布直方图:
(1)求高二学生学习时间的频率分布直方图中的值,并根据此频率分布直方图估计该校高二学生学习时间的中位数;
(2)利用分层抽样的方法,从高一学生学习时间在,的两组里随机抽取人,再从这人中随机抽取人,求学习时间在这一组中至少有人被抽中的概率.