题目内容

【题目】已知函数f(x)= sinωx﹣ cosωx(ω<0),若y=f(x+ )的图象与y=f(x﹣ )的图象重合,记ω的最大值为ω0 , 函数g(x)=cos(ω0x﹣ )的单调递增区间为(
A.[﹣ π+ ,﹣ + ](k∈Z)
B.[﹣ + + ](k∈Z)
C.[﹣ π+2kπ,﹣ +2kπ](k∈Z)
D.[﹣ +2kπ,﹣ +2kπ](k∈Z)

【答案】A
【解析】解:函数f(x)= sinωx﹣ cosωx(ω<0)=2sin(ωx﹣ ), 若y=f(x+ )的图象与y=f(x﹣ )的图象重合,
为函数f(x)的周期,即 =k| |,∴ω=±4k,k∈Z.
记ω的最大值为ω0 , 则ω0=﹣4,
函数g(x)=cos(ω0x﹣ )=cos(﹣4x﹣ )=cos(4k+ ).
令2kπ﹣π≤4x+ ≤2kπ,求得 ≤x≤
故函数g(x)的增区间为[ ],k∈Z.
故选:A.
利用三角恒等变换化简f(x)的解析式,利用正弦函数的周期性求得ω的值,再利用余弦函数的单调性,求得函数g(x)的增区间.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网