题目内容

1.函数$y=\frac{ln(2x-1)}{{\sqrt{2-x}}}$的定义域为(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2)C.($\frac{1}{2}$,1)D.(-∞,2)

分析 根据函数成立的条件即可求函数的定义域.

解答 解:要使函数有意义,则$\left\{\begin{array}{l}{2x-1>0}\\{2-x>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>\frac{1}{2}}\\{x<2}\end{array}\right.$,
即$\frac{1}{2}$<x<2,
故函数的定义域为($\frac{1}{2}$,2),
故选:B

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网