题目内容
【题目】如图,在四面体中,.
(1)求证:平面平面;
(2)若,二面角为,求异面直线与所成角的余弦值.
【答案】(1)证明见解析
(2)
【解析】
(1)取中点连接,得,可得,
可证,可得,进而平面,即可证明结论;
(2)设分别为边的中点,连,可得,,可得(或补角)是异面直线与所成的角,,可得,为二面角的平面角,即,设,求解,即可得出结论.
(1)证明:取中点连接,
由则
,则,
故,,
平面,又平面,
故平面平面
(2)解法一:设分别为边的中点,
则,
(或补角)是异面直线与所成的角.
设为边的中点,则,
由知.
又由(1)有平面,
平面,
所以为二面角的平面角,,
设则
在中,
从而
在中,,
又,
从而在中,因,
,
因此,异面直线与所成角的余弦值为.
解法二:过点作交于点
由(1)易知两两垂直,
以为原点,射线分别为轴,
轴,轴的正半轴,建立空间直角坐标系.
不妨设,由,
易知点的坐标分别为
则
显然向量是平面的法向量
已知二面角为,
设,则
设平面的法向量为,
则
令,则
由
由上式整理得,
解之得(舍)或
,
因此,异面直线与所成角的余弦值为.
【题目】设三棱锥的每个顶点都在球的球面上,是面积为的等边三角形,,,且平面平面.
(1)确定的位置(需要说明理由),并证明:平面平面.
(2)与侧面平行的平面与棱,,分别交于,,,求四面体的体积的最大值.
【题目】为了调查某大学学生的某天上网的时间,随机对名男生和名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟) | |||||
人数 |
表2:女生上网时间与频数分布表
上网时间(分钟) | |||||
人数 |
(1)用分层抽样在选取人,再随机抽取人,求抽取的人都是女生的概率;
(2)完成下面的列联表,并回答能否有的把握认为“大学生上网时间与性别有关”?
上网时间少于分钟 | 上网时间不少于分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附: