题目内容
如图,在直三棱柱
中,![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002521996706.png)
,
,
是
的中点.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025221055248.jpg)
(1)求证:
平行平面
;
(2)求二面角
的余弦值;
(3)试问线段
上是否存在点
,使
与
成
角?若存在,确定
点位置,若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002521964672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002521996706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522027304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522042671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522058315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522074395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025221055248.jpg)
(1)求证:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522120437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522136505.png)
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522167581.png)
(3)试问线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522183453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522230410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522245432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522261376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
(1)只需证
∥
;(2)
;(3)点
为线段
中点时,
与
成
角.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522120437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522323373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522339382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522370447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522230410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522245432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522261376.png)
试题分析:(Ⅰ)证明:连结
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522448435.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522464423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522495292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522323373.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002521964672.png)
得 四边形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522542522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522495292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522448435.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522058315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522074395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522323373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522666560.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522120437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522323373.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522713415.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522136505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522760525.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522136505.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522120437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522136505.png)
(Ⅱ)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002521964672.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522042671.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522854624.png)
如图建立空间直角坐标系
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522869522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522885478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025229006801.jpg)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025229161496.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522932714.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522947731.png)
设平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522963506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522978639.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522994996.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523010934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523025359.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523041612.png)
易知平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523056483.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523072553.png)
由二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522167581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025231191051.png)
所以二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522167581.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522339382.png)
(Ⅲ)假设存在满足条件的点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522370447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523244610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523259567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523275616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523290537.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523322814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523337683.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522230410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522245432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522261376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240025234001120.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523415991.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523431382.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002523446437.png)
所以当点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522198318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522370447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522230410.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522245432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002522261376.png)
点评:二面角的求法是立体几何中的一个难点。我们解决此类问题常用的方法有两种:①综合法,综合法的一般步骤是:一作二说三求。②向量法,运用向量法求二面角应注意的是计算。很多同学都会应用向量法求二面角,但结果往往求不对,出现的问题就是计算错误。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目