题目内容
14.已知数列{an}中,a1=35,anan-1+1=2an-1(n≥2,n∈N*),数列{bn}满足bn=1an−1(n∈N*)分析 (1)通过bn+1-bn=1an+1−1-1an−1、利用anan-1+1=2an-1代入化简即得结论;
(2)通过(1)可知bn=n-72,进而an=1+22n−7,计算即得结论.
解答 (1)证明:依题意,bn+1-bn=1an+1−1-1an−1
=(an−1)−(an+1−1)(an+1−1)(an−1)
=an−an+1anan+1−an−an+1+1
=an−an+12an−1−an−an+1+1
=an−an+1an−an+1
=1,
又∵b1=1a1−1=-52,
∴数列{bn}是以-52为首项、1为公差的等差数列;
(2)解:由(1)可知bn=-52+(n-1)•1=n-72,
∴an=1+1bn=1+1n−72=1+22n−7,
显然当n=4时1+22n−7取最大值3,当n=3时1+22n−7取最小值-1,
∴数列{an}中的最大项为a4=3,最小项为a3-1.
点评 本题考查等差数列的判定,考查数列的通项,注意解题方法的积累,属于中档题.
A. | (2,4) | B. | (1,8) | C. | (4,2) | D. | (8,1) |