ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÆäÖÐan¡Ù0£¬a1Ϊ³£Êý£¬ÇÒ-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁУ®
£¨1£©µ±a1=2ʱ£¬Çó{an}µÄͨÏʽ£»
£¨2£©µ±a1=2ʱ£¬Éèbn=log2 £¨an2£©-1£¬Èô¶ÔÓÚn¡ÊN*£¬
+
+
+¡+
£¼kºã³ÉÁ¢£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨3£©Éècn=Sn+1£¬ÎÊ£ºÊÇ·ñ´æÔÚa1£¬Ê¹ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öa1µÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©µ±a1=2ʱ£¬Çó{an}µÄͨÏʽ£»
£¨2£©µ±a1=2ʱ£¬Éèbn=log2 £¨an2£©-1£¬Èô¶ÔÓÚn¡ÊN*£¬
1 |
b1b2 |
1 |
b2b3 |
1 |
b3b4 |
1 |
bnbn+1 |
£¨3£©Éècn=Sn+1£¬ÎÊ£ºÊÇ·ñ´æÔÚa1£¬Ê¹ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ¿Èô´æÔÚ£¬Çó³öa1µÄÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖÐ-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁУ¬¿ÉµÃSn=an+1-a1£¬½ø¶ø¿ÉµÃan+1=2an£¬½áºÏa1=2ʱ£¬¿ÉµÃ{an}µÄͨÏʽ£»
£¨2£©ÓÉ£¨1£©½áºÏ¶ÔÊýµÄÔËËãÐÔÖÊ£¬¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬½ø¶øÀûÓòðÏî·¨¿ÉÇó³ö
+
+
+¡+
µÄ±í´ïʽ£¬½ø¶ø¿ÉµÃʵÊýkµÄÈ¡Öµ·¶Î§£»
£¨3£©ÓÉcn=a1¡Á2n-a1+1£¬½áºÏµÈ±ÈÊýÁеĶ¨Ò壬¿ÉµÃµ±ÇÒ½öµ±-a1+1=0ʱ£¬ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ®
£¨2£©ÓÉ£¨1£©½áºÏ¶ÔÊýµÄÔËËãÐÔÖÊ£¬¿ÉµÃÊýÁÐ{bn}µÄͨÏʽ£¬½ø¶øÀûÓòðÏî·¨¿ÉÇó³ö
1 |
b1b2 |
1 |
b2b3 |
1 |
b3b4 |
1 |
bnbn+1 |
£¨3£©ÓÉcn=a1¡Á2n-a1+1£¬½áºÏµÈ±ÈÊýÁеĶ¨Ò壬¿ÉµÃµ±ÇÒ½öµ±-a1+1=0ʱ£¬ÊýÁÐ{cn}ΪµÈ±ÈÊýÁУ®
½â´ð£º½â£º£¨1£©¡ß-2a1£¬Sn£¬2an+1³ÉµÈ²îÊýÁÐ
¡à2Sn=-2a1+2an+1£¬
¡àSn=an+1-a1£¬¡¢Ù
µ±n¡Ý2ʱ£¬Sn-1=an-a1£¬¡¢Ú
Á½Ê½Ïà¼õµÃ£ºan=an+1-an£¬
¼´an+1=2an£¬------£¨2·Ö£©
µ±n=1ʱ£¬S1=a2-a1£¬¼´a2=2a1£¬
ÊʺÏan+1=2an£¬-------------£¨3·Ö£©
ËùÒÔÊýÁÐ{an}ÊÇÒÔa1=2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔan=2n---------------------------------------------------£¨4·Ö£©
£¨2£©ÓÉ£¨1£©µÃan=2n£¬ËùÒÔbn=log2 £¨an2£©-1=2n-1
¡à
+
+
+¡+
=
+
+
+¡+
=
[£¨1-
£©+£¨
-
£©+£¨
-
£©+¡+£¨
-
£©]=
£¨1-
£©
¡ßn¡ÊN*£¬
¡à
£¨1-
£©£¼
Èô¶ÔÓÚn¡ÊN*£¬
+
+
+¡+
£¼kºã³ÉÁ¢£¬
¡àk¡Ý
-----------------£¨8·Ö£©
£¨ 3£©ÓÉ£¨1£©µÃÊýÁÐ{an}ÊÇÒÔa1ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ
ËùÒÔcn=Sn+1=
+1=a1¡Á2n-a1+1--------------------------£¨10·Ö£©
Ҫʹ{cn}ΪµÈ±ÈÊýÁУ¬µ±ÇÒ½öµ±-a1+1=0
¼´a1=1
ËùÒÔ´æÔÚa1=1£¬Ê¹{cn}ΪµÈ±ÈÊýÁÐ--------------------------------£¨12·Ö£©
¡à2Sn=-2a1+2an+1£¬
¡àSn=an+1-a1£¬¡¢Ù
µ±n¡Ý2ʱ£¬Sn-1=an-a1£¬¡¢Ú
Á½Ê½Ïà¼õµÃ£ºan=an+1-an£¬
¼´an+1=2an£¬------£¨2·Ö£©
µ±n=1ʱ£¬S1=a2-a1£¬¼´a2=2a1£¬
ÊʺÏan+1=2an£¬-------------£¨3·Ö£©
ËùÒÔÊýÁÐ{an}ÊÇÒÔa1=2ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔan=2n---------------------------------------------------£¨4·Ö£©
£¨2£©ÓÉ£¨1£©µÃan=2n£¬ËùÒÔbn=log2 £¨an2£©-1=2n-1
¡à
1 |
b1b2 |
1 |
b2b3 |
1 |
b3b4 |
1 |
bnbn+1 |
1 |
1¡Á3 |
1 |
3¡Á5 |
1 |
5¡Á7 |
1 |
(2n-1)(2n+1) |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
5 |
1 |
7 |
1 |
2n-1 |
1 |
2n+1 |
1 |
2 |
1 |
2n+1 |
¡ßn¡ÊN*£¬
¡à
1 |
2 |
1 |
2n+1 |
1 |
2 |
Èô¶ÔÓÚn¡ÊN*£¬
1 |
b1b2 |
1 |
b2b3 |
1 |
b3b4 |
1 |
bnbn+1 |
¡àk¡Ý
1 |
2 |
£¨ 3£©ÓÉ£¨1£©µÃÊýÁÐ{an}ÊÇÒÔa1ΪÊ×ÏÒÔ2Ϊ¹«±ÈµÄµÈ±ÈÊýÁÐ
ËùÒÔcn=Sn+1=
a1(1-2n) |
1-2 |
Ҫʹ{cn}ΪµÈ±ÈÊýÁУ¬µ±ÇÒ½öµ±-a1+1=0
¼´a1=1
ËùÒÔ´æÔÚa1=1£¬Ê¹{cn}ΪµÈ±ÈÊýÁÐ--------------------------------£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊǵȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽ£¬ÊýÁÐÇóºÍ£¬ºã³ÉÁ¢ÎÊÌ⣬ÊÇÊýÁеÄ×ÛºÏÓ¦Óã¬ÄѶȽϴó£¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿