题目内容
(本题满分16分)在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,=2=2.
(1)求证:;
(2)求证:∥平面;
(3)求三棱锥的体积.
解:(1)在Rt△ABC中,AB=1,∠BAC=60°,
∴BC=,AC=2.取中点,连AF, EF,
∵PA=AC=2,∴PC⊥. ………………………………………………………2分
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥,又∠ACD=90°,即,
∴,∴,
∴. …………………………………………………………………… 4分
∴. ∴PC⊥.…………………………………………………6分
(2)证法一:取AD中点M,连EM,CM.则
EM∥PA.∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB. ……………………………………………………………………8分
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB. ……………………………………………………………………10分
∵EM∩MC=M,∴平面EMC∥平面PAB.
∵EC平面EMC,∴EC∥平面PAB.………………………………………………12分
证法二:延长DC、AB,设它们交于点N,连PN.
∵∠NAC=∠DAC=60°,AC⊥CD,∴C为ND的中点.…………………………8分
∵E为PD中点,∴EC∥PN …………………………………………………………10分
∵EC 平面PAB,PN平面PAB,∴EC∥平面PAB. ………………… 12分(3)由(1)知AC=2,EF=CD, 且EF⊥平面PAC.
在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,得EF=.……………14分
则V=. ………………………………… 16分
【解析】略