题目内容

【题目】某校高二八班选出甲、乙、丙三名同学参加级部组织的科学知识竞赛.在该次竞赛中只设成绩优秀和成绩良好两个等次,若某同学成绩优秀,则给予班级10分的班级积分,若成绩良好,则给予班级5分的班级积分.假设甲、乙、丙成绩为优秀的概率分别为 ,他们的竞赛成绩相互独立.
(1)求在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率;
(2)记在该次竞赛中甲、乙、丙三名同学所得的班级积分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

【答案】
(1)解:记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,

“甲、乙、丙至少有一名成绩为优秀”为事件E,

∵事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,

∴P(E)=1﹣P( )=1﹣ =


(2)解:ξ的所有可能取值为15,20,25,30,

P(ξ=15)=P( )= =

P(ξ=20)=P(A )+P( )+P( )= + + =

P(ξ=30)=P(ABC)= =

∴ξ的分布列为:

ξ

15

20

25

30

P

Eξ= =


【解析】(1)记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,“甲、乙、丙至少有一名成绩为优秀”为事件E,由事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,能求出在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率.(2)ξ的所有可能取值为15,20,25,30,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网