题目内容
【题目】某校高二八班选出甲、乙、丙三名同学参加级部组织的科学知识竞赛.在该次竞赛中只设成绩优秀和成绩良好两个等次,若某同学成绩优秀,则给予班级10分的班级积分,若成绩良好,则给予班级5分的班级积分.假设甲、乙、丙成绩为优秀的概率分别为 , , ,他们的竞赛成绩相互独立.
(1)求在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率;
(2)记在该次竞赛中甲、乙、丙三名同学所得的班级积分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.
【答案】
(1)解:记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,
“甲、乙、丙至少有一名成绩为优秀”为事件E,
∵事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,
∴P(E)=1﹣P( )=1﹣ =
(2)解:ξ的所有可能取值为15,20,25,30,
P(ξ=15)=P( )= = ,
P(ξ=20)=P(A )+P( )+P( )= + + = ,
P(ξ=30)=P(ABC)= = ,
∴ξ的分布列为:
ξ | 15 | 20 | 25 | 30 |
P |
Eξ= =
【解析】(1)记“甲成绩为优秀”为事件A,“乙成绩优秀”为事件B,“丙成绩优秀”为事件C,“甲、乙、丙至少有一名成绩为优秀”为事件E,由事件A、B、C是相互独立事件,事件ABC与事件E是对立事件,能求出在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率.(2)ξ的所有可能取值为15,20,25,30,分别求出相应的概率,由此能求出ξ的分布列和Eξ.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策,提高生殖健康、妇幼保健、托幼等公共服务水平.为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了100位30到40岁的公务员,得到情况如下表:
男公务员 | 女公务员 | |
生二胎 | 40 | 20 |
不生二胎 | 20 | 20 |
(1)是否有95%以上的把握认为“生二胎与性别有关”,并说明理由;
(2)把以上频率当概率,若从社会上随机抽取3位30到40岁的男公务员,记其中生二胎的人数为X,求随机变量X的分布列,数学期望.
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |