题目内容
15.对于实数a,b,定义运算“△”;a△b=(a-b)2,已知实数x1,x2满足y=$\sqrt{({x}_{1}△{x}_{2})+({x}_{1}+\frac{1}{{x}_{1}})△\sqrt{1-{{x}_{2}}^{2}}}$,则y的最小值为$\sqrt{2\sqrt{2}+2}-1$.分析 化简y=$\sqrt{({x}_{1}△{x}_{2})+({x}_{1}+\frac{1}{{x}_{1}})△\sqrt{1-{{x}_{2}}^{2}}}$=$\sqrt{({x}_{1}-{x}_{2})^{2}+(({x}_{1}+\frac{1}{{x}_{1}})-\sqrt{1-{{x}_{2}}^{2}})^{2}}$,其表示了点A(x1,${x}_{1}+\frac{1}{{x}_{1}}$),B(x2,$\sqrt{1-{{x}_{2}}^{2}}$)的距离;作函数图象求解即可.
解答 解:由题意,
y=$\sqrt{({x}_{1}△{x}_{2})+({x}_{1}+\frac{1}{{x}_{1}})△\sqrt{1-{{x}_{2}}^{2}}}$
=$\sqrt{({x}_{1}-{x}_{2})^{2}+(({x}_{1}+\frac{1}{{x}_{1}})-\sqrt{1-{{x}_{2}}^{2}})^{2}}$,
其表示了点A(x1,${x}_{1}+\frac{1}{{x}_{1}}$),B(x2,$\sqrt{1-{{x}_{2}}^{2}}$)的距离;
作函数y=x+$\frac{1}{x}$与函数y=$\sqrt{1-{x}^{2}}$的图象如下,
设切点为(x,x+$\frac{1}{x}$),
故($\frac{x+\frac{1}{x}}{x}$)•(1-$\frac{1}{{x}^{2}}$)=-1;
故x=$\root{4}{\frac{1}{2}}$,故y=$\sqrt{2\sqrt{2}+2}-1$;
故答案为:$\sqrt{2\sqrt{2}+2}-1$.
点评 本题考查了函数的几何意义的应用及最值的求法,同时考查了数形结合的思想应用,属于中档题.
A. | $h(t)=-8sin\frac{π}{6}t+10$ | B. | $h(t)=-8cos\frac{π}{6}t+10$ | C. | $h(t)=-8sin\frac{π}{6}t+8$ | D. | $h(t)=-8cos\frac{π}{6}t+8$ |
A. | 1 | B. | 3 | C. | 5 | D. | 9 |
A. | 16 | B. | 14 | C. | 4 | D. | 2 |
A班 | 5 | 5 | 8 | 8 | 9 |
B班 | m | 4 | 7 | n | 8 |
(1)求表格中m和n的值;
(2)若从抽取的B班5人中任取2人,求2人都合格的概率.
X | 0 | 1 |
P | $\frac{a}{2}$ | $\frac{{a}^{2}}{2}$ |
A. | 2 | B. | 2或$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
A. | 2+e | B. | 2+$\sqrt{e}$ | C. | 4+e | D. | 4ln2+$\sqrt{e}$ |