题目内容
【题目】疫情后,为了支持企业复工复产,某地政府决定向当地企业发放补助款,其中对纳税额在万元至万元(包括万元和万元)的小微企业做统一方案.方案要求同时具备下列两个条件:①补助款(万元)随企业原纳税额(万元)的增加而增加;②补助款不低于原纳税额(万元)的.经测算政府决定采用函数模型(其中为参数)作为补助款发放方案.
(1)判断使用参数是否满足条件,并说明理由;
(2)求同时满足条件①、②的参数的取值范围.
【答案】(1)当时不满足条件②,见解析(2)
【解析】
(1)因为当时,,所以不满足条件② ;
(2)求导得:,当时,满足条件①;当时,在上单调递增,所以.由条件②可知,,即,等价于在上恒成立,问题得解.
(1)因为当时,,所以当时不满足条件② .
(2)由条件①可知,在上单调递增,
所以当时,满足条件;
当时,由可得
当时,单调递增,
,解得,
所以
由条件②可知,,即不等式在上恒成立,
等价于
当时,取最小值
综上,参数的取值范围是.
练习册系列答案
相关题目
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如表),得到了散点图(如图).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,.
(1)根据散点图判断,与哪一个更适宜作烧开一壶水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若旋转的弧度数与单位时间内煤气输出量成正比,那么为多少时烧开一壶水最省煤气?
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为,.