题目内容
5.已知函数f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$,若a<b,f(a)=f(b),则实数a-2b的取值范围为( )A. | (-∞,$\frac{1}{e}$-1) | B. | (-∞,1-$\frac{1}{e}$) | C. | (-∞,2-$\frac{1}{e}$) | D. | (-∞,-$\frac{1}{e}$-2) |
分析 画同函数f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$的图象,结合a<b,且f(a)=f(b),表示出a-2b,利用导数法求出其上确界,可得答案.
解答 解:函数f(x)=$\left\{\begin{array}{l}{2x-1(x>-1)}\\{{e}^{x}(x≤-1)}\end{array}\right.$的图象如下图所示:
若a<b,f(a)=f(b),
则2b-1=ea,则a-2b=a-ea-1,a≤-1,
令y=a-ea-1,a≤-1,
则y′=1-ea,a≤-1,
此时ea≤$\frac{1}{e}$,则y′>0恒成立,
故y=a-ea-1<y|a=-1=-$\frac{1}{e}$-2,
即实数a-2b的取值范围为(-∞,-$\frac{1}{e}$-2),
故选:D.
点评 本题考查的知识点是分段函数的应用,根据已知画出函数f(x)的图象,是解答的关键.
练习册系列答案
相关题目
20.根据表格内容填空:
(1)写出经过这些点的二次函数解析式y=x2-4;
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.
x | -2 | 0 | 2 |
y | 0 | -4 | 0 |
(2)写出所对应的一元二次方程的解±2;
(3)写出当y>0时的一元二次不等式的解集{x|x<-2,或x>2};;
(4)写出当y≤0时的一元二次不等式的解集{x|-2≤x≤2};;
(5)写出当y≤2时的一元二次不等式的解集{x|-$\sqrt{6}$≤x≤$\sqrt{6}$};;
(6)写出当y>1时的一元二次不等式的解集{x|x<-$\sqrt{5}$,或x>$\sqrt{5}$};.
17.已知f(x)是反比例函数,且f(2)=-4,则f(x)=( )
A. | -2x | B. | 3x-10 | C. | -$\frac{x}{8}$ | D. | -$\frac{8}{x}$ |