题目内容

已知数列{an},对于任意n≥2,在an-1与an之间插入n个数,构成的新数列{bn}成等差数列,并记在an-1与an之间插入的这n个数均值为Cn-1
(1)若an=
n2+3n-82
,求C1,C2,C3
(2)在(1)的条件下是否存在常数λ,使{Cn-1-λCn}是等差数列?如果存在,求出满足条件的λ,如果不存在,请说明理由;
(3)求出所有的满足条件的数列{an}.
分析:(1)由题意可得a1=-2,a2=1,a3=5,a4=10,由此求得C1,C2,C3 的值.
(2)在an-1与an之间插入n个数构成等差,d=
an-an-1
n+1
=1,可得Cn-1 的值,再根据等差数列的定义求得满足条件的λ.
(3)由题意满足条件的数列{an}应满足
an-an-1
n+1
=
an+1-an
n+2
,即
an+1-an
an-an-1
=
n+2
n+1
,用累乘法求得an+1-an=
1
3
(a2-a1)•(n+2),再用累加法求得满足条件的
数列{an}的通项公式.
解答:解:(1)由题意可得a1=-2,a2=1,a3=5,a4=10,∴在a1与a2之间插入-1、0,C1=-
1
2
,…1′
在a2与a3之间插入2、3、4,C2=3,…2′在a3与a4之间插入6、7、8、9,C3=
15
2
.…3′
(2)在an-1与an之间插入n个数构成等差,d=
an-an-1
n+1
=1,∴Cn-1 =
an-1+an
2
=
n2+2n-9
2
.…5′
假设存在λ使得{Cn+1-λCn}是等差数列,
∵(Cn+1-λCn)-(Cn-λCn-1)=Cn+1-Cn-λ(Cn-Cn-1)=
2n+5
2
-λ•
2n+3
2
=(1-λ)n+
5
2
-
3
2
λ=常数,
∴λ=1时{Cn+1-λCn}是等差数列.…8′
(3)由题意满足条件的数列{an}应满足
an-an-1
n+1
=
an+1-an
n+2
,…10′∴
an+1-an
an-an-1
=
n+2
n+1

an+1-an
an-an-1
an-an-1
an-1-an-2
 …
a4-a3
a3-a2
a3-a2
a2-a1
=
n+2
n+1
n+1
n
5
4
4
3
=
n+2
3

∴an+1-an=
1
3
(a2-a1)•(n+2),…12′
∴an-an-1=
1
3
(a2-a1)•(n+1),

a3-a2=
1
3
(a2-a1)×4,
a2-a1=
1
3
(a2-a1)×3,
∴an-a1=
1
3
(a2-a1)•
(n-1)(3+n+1)
2
(n≥2)
∴an=
1
6
(a2-a1)(n-1)(n+4)+a1(n≥2).…14′
又∵n=1时也满足条件,…15′
∴形如 an=a(n-1)(n+4)+b (a、b∈R) 的数列均满足条.…16′
点评:本题主要考查等差关系的确定,等差数列的定义和性质,等差数列的通项公式,数列的函数特性,用累乘法和累加法求数列的通项公式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网