题目内容

1.已知P、A、B、C是球O球面上的四点,△ABC是正三角形,三棱锥P-ABC的体积为$\frac{9}{4}$$\sqrt{3}$,且∠APO=∠BPO=∠CPO=30°,则球O的表面积为16π.

分析 设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,由已知条件推导出a=$\frac{3}{4}$R,再由三棱锥P-ABC的体积为$\frac{9}{4}$$\sqrt{3}$,求出R=2,由此能求出球O的表面积.

解答 解:如图,P,A,B,C是球O球面上四点,△ABC是正三角形,
设△ABC的中心为S,球O的半径为R,△ABC的边长为2a,
∵∠APO=∠BPO=∠CPO=30°,
OB=OP=R,
∴OS=$\frac{R}{2}$,BS=$\frac{\sqrt{3}}{2}R$,
∴$\frac{2\sqrt{3}}{3}a$=$\frac{\sqrt{3}}{2}R$,解得a=$\frac{3}{4}$R,2a=$\frac{3}{2}$R,
∵三棱锥P-ABC的体积为$\frac{9}{4}\sqrt{3}$,
∴$\frac{1}{3}×\frac{1}{2}×\frac{1}{2}×\frac{3}{2}R×\frac{3}{2}Rsin60°×\frac{3}{2}R$=$\frac{9}{4}\sqrt{3}$,
解得R=2,
∴球O的表面积S=4πR2=16π.
故答案为:16π.

点评 本题考查球的表面积的求法,是中档题,解题时确定球O的半径是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网