题目内容
6.设曲线y=f(x)在原点与y=sinx相切.求极限$\underset{lim}{n→∞}$${n}^{\frac{1}{2}}$$\sqrt{f(\frac{2}{n})}$.分析 由题意可得$\left\{\begin{array}{l}{f(0)=0}\\{f′(0)=1}\end{array}\right.$,从而化简$\underset{lim}{n→∞}$${n}^{\frac{1}{2}}$$\sqrt{f(\frac{2}{n})}$=$\underset{lim}{n→∞}$$\sqrt{\frac{f(\frac{2}{n})-f(0)}{\frac{2}{n}-0}•2}$,从而解得.
解答 解:由已知可得,$\left\{\begin{array}{l}{f(0)=0}\\{f′(0)=1}\end{array}\right.$,
$\underset{lim}{n→∞}$${n}^{\frac{1}{2}}$$\sqrt{f(\frac{2}{n})}$
=$\underset{lim}{n→∞}$$\sqrt{nf(\frac{2}{n})}$
=$\underset{lim}{n→∞}$$\sqrt{\frac{f(\frac{2}{n})-f(0)}{\frac{2}{n}-0}•2}$
=$\sqrt{2}$•$\sqrt{f′(0)}$=$\sqrt{2}$.
点评 本题考查了导数的几何意义的应用及极限的求法.
练习册系列答案
相关题目
16.设函数f(x)在x=0处连续.下列结论不正确的是( )
A. | 若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f′(0)存在 | B. | 若$\underset{lim}{x→0}$$\frac{f(x)+f(-x)}{x}$存在,则f(0)=0 | ||
C. | 若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f(0)=0 | D. | 若$\underset{lim}{x→0}$$\frac{f(x)}{x}$存在,则f′(0)存在 |