题目内容
【题目】已知函数f(x)=aln(x+1)+x2-ax+1(a>1).
(1)求函数y=f(x)在点(0,f(0))处的切线方程;
(2)当a>1时,求函数y=f(x)的单调区间和极值.
【答案】(1)切线方程为y=1;(2)答案见解析.
【解析】
(1)由f′(0)=k,可得函数y=f(x)在点(0,f(0))处的切线方程的斜率,又f(0)=1。可得切线方程
(2)求出f′(x),令f′(x)=0得出零点。讨论f′(x)随x变化的情况即可得出单调区间以及极值。
(1)f(0)=1,f′(x)=+x-a=,f′(0)=0,所以函数y=f(x)在点(0,f(0))处的切线方程为y=1.
(2)函数的定义域为(-1,+∞),
令f′(x)=0,即=0.
解得x=0或x=a-1.
当a>1时,f(x),f′(x)随x变化的情况如下:
x | (-1,0) | 0 | (0,a-1) | a-1 | (a-1,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↗ | 极大值 | ↘ | 极小值 | ↗ |
可知f(x)的单调减区间是(0,a-1),增区间是(-1,0)和(a-1,+∞),极大值为f(0)=1,极小值为f(a-1)=aln a-a2+.
练习册系列答案
相关题目
【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中优秀的人数是30人.
(1)请完成上面的列联表;
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
参考公式与临界值表 .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |