题目内容

【题目】已知函数f(x)=2x﹣5,g(x)=4x﹣x2 , 给下列三个命题: p1:若x∈R,则f(x)f(﹣x)的最大值为16;
p2:不等式f(x)<g(x)的解集为集合{x|﹣1<x<3}的真子集;
p3:当a>0时,若x1 , x2∈[a,a+2],f(x1)≥g(x2)恒成立,则a≥3,
那么,这三个命题中所有的真命题是(
A.p1 , p2 , p3
B.p2 , p3
C.p1 , p2
D.p1

【答案】A
【解析】解:∵函数f(x)=2x﹣5,g(x)=4x﹣x2 , ∴f(x)f(﹣x)=(2x﹣5)(2x﹣5)=26﹣5(2x+2x)≤26﹣10 =16,
故p1:若x∈R,则f(x)f(﹣x)的最大值为16,为真命题;
在同一坐标系中作出函数f(x)=2x﹣5,g(x)=4x﹣x2的图像如下图所示:

由图可得:p2:不等式f(x)<g(x)的解集为集合{x|﹣1<x<3}的真子集,为真命题;
p3:当a>0时,若x1 , x2∈[a,a+2],f(x1)≥g(x2)恒成立,则a≥3,为真命题;
故选:A
【考点精析】本题主要考查了命题的真假判断与应用的相关知识点,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网