题目内容
【题目】设数列{xn}的前n项和为Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求数列{xn}的通项公式;
(2)若数列{yn}满足yn+1﹣yn=xn(n∈N*),且y1=2,求满足不等式 的最小正整数n的值.
【答案】
(1)解:∵4xn﹣Sn﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.
n≥2时,由Sn=4xn﹣3,∴xn=Sn﹣Sn﹣1=4xn﹣3﹣(4xn﹣1﹣3),∴xn= ,∴数列{xn},是等比数列,公比为 .
∴xn= .
(2)解:yn+1﹣yn=xn= ,且y1=2,
∴yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)
=2+1+ + +…+ =2+ =3× ﹣1.当n=1时也满足.
∴yn=3× ﹣1.
不等式 ,化为: = ,∴n﹣1>3,解得n>4.
∴满足不等式 的最小正整数n的值为5
【解析】(1)由4xn﹣Sn﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1 . n≥2时,由Sn=4xn﹣3,可得xn=Sn﹣Sn﹣1 , 利用等比数列的通项公式即可得出.(2)yn+1﹣yn=xn= ,且y1=2,利用yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)与等比数列的求和公式即可得出yn . 代入不等式 ,化简即可得出.
练习册系列答案
相关题目