题目内容

已知平面几何中有勾股定理,若直角三角形ABC的两边AB、AC互相垂直,则三角形的三边长之间满足关系AB2+AC2=BC2,类比上述定理,若三棱锥S-ABC的三个侧面SAB、SAC、SBC两两互相垂直,则其面积之间有何关系        

分析:斜边的平方等于两个直角边的平方和,可类比到空间就是斜面面积的平方等于三个直角面的面积的平方和,边对应着面.

解:由边对应着面,边长对应着面积,由类比可得SBCD2=SABC2+SACD2+SADB2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网