题目内容
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面BDE;
(2)求证:PB⊥平面DEF.
【答案】(1)证明见解析;(2)证明见解析
【解析】
(1)连结AC,设AC交BD于O,连结EO,利用中位线定理以及线面平行的判定定理,即可证明;
(2)先利用线面垂直的判定定理以及线面垂直的性质得出BC⊥DE, DE⊥PB,最后利用线面垂直的判定定理得出PB⊥平面DEF.
证明:(1)连结AC,设AC交BD于O,连结EO
∵底面ABCD是矩形,∴点O是AC的中点
又∵点E是PC的中点,∴PA∥EO
∵EO平面BDE,PA平面BDE
∴PA∥平面BDE.
(2)PD⊥底面ABCD,BC底面ABCD
∴PD⊥BC
∵底面ABCD是矩形,∴CD⊥BC
∵PD∩CD=D,PD,CD平面PDC
∴BC⊥平面PDC
∵DE平面PDC,∴BC⊥DE
∵PD=DC,E是PC的中点,∴DE⊥PC
∵PC∩BC=C,PC 平面PBC,BC 平面PBC
∴DE⊥平面PBC,PB平面PBC
∴DE⊥PB
又∵EF⊥PB,DE∩EF=E,DE平面DEF,EF平面DEF
∴PB⊥平面DEF.
【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.
(1)根据以上数据建立一个2×2的列联表;并估计,以运动为主的休闲方式的人的比例;
(2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2.