题目内容

【题目】对于数对序列P:(a1 , b1),(a2 , b2),…,(an , bn),记T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),其中max{Tk1(P),a1+a2+…+ak}表示Tk1(P)和a1+a2+…+ak两个数中最大的数,
(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;
(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;
(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值(只需写出结论).

【答案】
(1)解: T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8;
(2)解:T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.

当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b,

∵a+b+d≤c+d+b,且a+c+d≤c+b+d,∴T2(P)≤T2(P′);

当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b,

∵a+b+d≤c+a+b,且a+c+d≤c+a+d,∴T2(P)≤T2(P′);

∴无论m=a和m=d,T2(P)≤T2(P′);


(3)解:数对(4,6),(11,11),(16,11),(11,8),(5,2),T5(P)最小;

T1(P)=10,T2(P)=26;T3(P)42,T4(P)=50,T5(P)=52.


【解析】(1)利用T1(P)=a1+b1 , Tk(P)=bk+max{Tk1(P),a1+a2+…+ak}(2≤k≤n),可求T1(P),T2(P)的值;(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b},分类讨论,利用新定义,可比较T2(P)和T2(P′)的大小;(3)根据新定义,可得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网