题目内容

【题目】设全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},(UA)∩(UB)=

【答案】(﹣∞,﹣1]∪[5,+∞)
【解析】解:全集U=R,集合A={x|﹣1<x<4}, B={y|y=x+1,x∈A}={y|0<y<5},
UA={x|x≤1或x≥4}=(﹣∞,﹣1]∪[4,+∞),
UB={y|y≤0或y≥5}=(﹣∞,0]∪[5,+∞);
∴(UA)∩(UB)=(﹣∞,﹣1]∪[5,+∞).
所以答案是:(﹣∞,﹣1]∪[5,+∞).
【考点精析】本题主要考查了交、并、补集的混合运算的相关知识点,需要掌握求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网