题目内容
【题目】如图所示,已知正方体ABCD-A1B1C1D1的棱长为a,过点B1作B1E⊥BD1于点E,求A、E两点之间的距离.
【答案】a
【解析】试题分析:(1)找到E点在底面上射影,即可写出E点的空间直角坐标系坐标,利用两点间距离公式可求.
试题解析:
根据题意,可得A(a,0,0)、B(a,a,0)、D1(0,0,a)、B1(a,a,a).
过点E作EF⊥BD于F,如图所示,
则在Rt△BB1D1中,
|BB1|=a,|BD1|=a,|B1D1|=a,
所以|B1E|==,
所以Rt△BEB1中,|BE|=a
由Rt△BEF∽Rt△BD1D,得|BF|=a,|EF|=,所以点F的坐标为(,,0),
则点E的坐标为(,,).
由两点间的距离公式,得
|AE|==a,
所以A、E两点之间的距离是a.
练习册系列答案
相关题目