题目内容

【题目】如图是抛物线形拱桥,当水面在l时,拱顶离水面4米,水面宽8米.水位上升1米后,水面宽为(
A.
B.2
C.3
D.4

【答案】D
【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半4米,抛物线顶点C坐标为(0,4),
通过以上条件可设顶点式y=ax2+4,其中a可通过代入A点坐标(﹣4,0),
到抛物线解析式得出:a=﹣ ,所以抛物线解析式为y=﹣ x2+4,
当水面上升1米,通过抛物线在图上的观察可转化为:
当y=1时,对应的抛物线上两点之间的距离,也就是直线y=1与抛物线相交的两点之间的距离,
可以通过把y=1代入抛物线解析式得出:
1=﹣ x2+4,
解得:x=±2
所以水面宽度增加到4 米,
故选:D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网