题目内容
【题目】如图是抛物线形拱桥,当水面在l时,拱顶离水面4米,水面宽8米.水位上升1米后,水面宽为( )
A. 米
B.2 米
C.3 米
D.4 米
【答案】D
【解析】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,
抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半4米,抛物线顶点C坐标为(0,4),
通过以上条件可设顶点式y=ax2+4,其中a可通过代入A点坐标(﹣4,0),
到抛物线解析式得出:a=﹣ ,所以抛物线解析式为y=﹣ x2+4,
当水面上升1米,通过抛物线在图上的观察可转化为:
当y=1时,对应的抛物线上两点之间的距离,也就是直线y=1与抛物线相交的两点之间的距离,
可以通过把y=1代入抛物线解析式得出:
1=﹣ x2+4,
解得:x=±2 ,
所以水面宽度增加到4 米,
故选:D.
练习册系列答案
相关题目
【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg | 箱产量≥50kg | |
旧养殖法 | ||
新养殖法 |
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:,