题目内容

已知f(x)在(-1,1)上有定义,f(
1
2
)=-1
且满足x,y∈(-1,1)时,有f(x)+f(y)=f(
x+y
1+xy
)

(1)证明:f(x)在(-1,1)上为奇函数.
(2)数列{an}满足a1=
1
2
an+1=
2an
1+an2
,xn=f(an),求{xn}的通项公式.
(3)求证:1+f(
1
5
)+f(
1
11
)+…+f(
1
n2+3n+1
)=-f(
1
n+2
)
分析:利用赋值法,先令y=0可求f(0)=0,再令y=-x即可证明f(-x)=-f(x),即可
(2)由xn=f(an)=f(
2an-1
1+an-12
)
=f(an-1)+f(an-1)=2f(an-1)=2xn-1,可得{xn}为等比数列,根据等比数列的通项公式可求
(3)由
1
n2+3n+1
=
(n+2)-(n+1)
(n+2)(n+1)-1
=
1
n+1
+(-
1
n+2
)
1+
1
n+1
•(-
1
n+2
)
及f(x+y)=f(
x+y
1+xy
)可得f(
1
n2+3n+1
)=f(
1
n+1
)+f(-
1
n+2
)
=f(
1
n+1
)-f(
1
n+2
)
,利用叠加可求
解答:(1)证明:令y=0得:f(x)+f(0)=f(x)所以f(0)=0
令y=-x得:f(x)+f(-x)=f(0)=0所以f(-x)=-f(x)
又f(x)的定义域为(-1,1)
所以f(x)在(-1,1)上为奇函数
(2)解:∵xn=f(an)=f(
2an-1
1+an-12
)
=f(an-1)+f(an-1)=2f(an-1)=2xn-1
x1=f(a1)=f(
1
2
)=-1

所以{xn}为以2为公比-1为首项的等比数列.  故xn=-2n-1
(3)证明:∵
1
n2+3n+1
=
(n+2)-(n+1)
(n+2)(n+1)-1
=
1
n+1
+(-
1
n+2
)
1+
1
n+1
•(-
1
n+2
)

所以:f(
1
n2+3n+1
)=f(
1
n+1
)+f(-
1
n+2
)
=f(
1
n+1
)-f(
1
n+2
)

所以   f(
1
5
)=f(
1
2
)-f(
1
3
)

      f(
1
11
)=f(
1
3
)-f(
1
4
)

       …
      f(
1
n2+3n+1
)=f(
1
n+1
)-f(
1
n+2
)

以上等式相加得:1+f(
1
5
)+f(
1
11
)+…f(
1
n2+3n+1
)
=1+f(
1
2
)-f(
1
n+2
)
=-f(
1
n+2
)
点评:本题主要考查了利用赋值法证明抽象函数的奇偶性,及等比数列的证明,通项公式的求解,叠加求解数列的和,本题是函数与数列知识的综合应用,具有一定的综合性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网