题目内容
【题目】(1)在复数范围内解方程(为虚数单位)
(2)设是虚数,是实数,且
(i)求的值及的实部的取值范围;
(ii)设,求证:为纯虚数;
(iii)在(ii)的条件下求的最小值.
【答案】(1);(2)(i);(ii)证明见解析;(iii)
【解析】
(1)利用待定系数法,结合复数相等构造方程组来进行求解;(2)(i)采用待定系数法,根据实数的定义构造方程即可解得和,利用的范围求得的范围;(ii)利用复数的运算进行整理,根据纯虚数的定义证得结论;(iii)将整理为,,利用基本不等式求得最小值.
(1)
设,则
,解得:
(2)(i)设且
为实数 ,整理可得:
即
(ii)
由(i)知:,则
且
是纯虚数
(iii)
令,则,
(当且仅当时取等号)
即的最小值为:
练习册系列答案
相关题目
【题目】设抛物线的焦点为,准线为.已知点在抛物线上,点在上,是边长为4的等边三角形.
(1)求的值;
(2)若直线是过定点的一条直线,且与抛物线交于两点,过作的垂
线与抛物线交于两点,求四边形面积的最小值.
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图如图所示,规定80分及以上者晋级成功,否则晋级失败.
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
Ⅰ求图中a的值;
Ⅱ根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?
Ⅲ将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的数学期望与方差.
参考公式:,其中