题目内容
【题目】如图,在四棱锥中,平面,四边形是菱形,,,且,交于点,是上任意一点.
(1)求证:;
(2)若为的中点,且二面角的余弦值为,求与平面所成角的正弦值.
【答案】(1)见解析; (2).
【解析】
(1)先求证AC⊥平面PBD,再证AC⊥DE.(2)先证明 EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系,再利用向量法求出EC与平面PAB所成角的正弦值.
(1)因为DP⊥平面ABCD,所以DP⊥AC,
因为四边形ABCD为菱形,所以BD⊥AC,
又BD∩PD=D,∴AC⊥平面PBD,
因为DE平面PBD,∴AC⊥DE.
(2)连接OE,在△PBD中,EO∥PD,
所以EO⊥平面ABCD,分别以OA,OB,OE所在直线为x轴,y轴,z轴,
建立如图所示的空间直角坐标系,
设PD=t,则A(1,0,0),B(0,,0),C(﹣1,0,0),
E(0,0,),P(0,﹣,t).
设平面PAB的一个法向量为(x,y,z),
则 ,令,得,
平面PBD的法向量(1,0,0),
因为二面角A﹣PB﹣D的余弦值为,
所以 ,
所以或(舍),
则
∴,
∴EC与平面PAB所成角的正弦值为.
练习册系列答案
相关题目