题目内容
【题目】定义空间点到几何图形的距离为:这一点到这个几何图形上各点距离中最短距离.
(1)在空间,求与定点距离等于1的点所围成的几何体的体积和表面积;
(2)在空间,线段(包括端点)的长等于1,求到线段的距离等于1的点所围成的几何体的体积和表面积;
(3)在空间,记边长为1的正方形区域(包括边界及内部的点)为,求到距离等于1的点所围成的几何体的体积和表面积.
【答案】(1),;(2),;(3),.
【解析】
(1)根据球的体积和表面公式计算可得结果;
(2)依题意可知围成的几何体是一个圆柱和两个半球的组合体,依据公式即可求得结果;
(3)分析可知,到距离等于1的点所围成的几何体是一个棱长分别为1,1,2的长方体和四个高为1,底面半径为1的半圆柱以及四个半径为1的四分之一球所围成的几何体,根据公式计算可得答案.
(1)与定点距离等于1的点所围成的几何体是一个半径为1的球,其体积为,表面积为,
(2)到线段的距离等于1的点所围成的几何体是一个以为高,底面半径为1的圆柱的侧面与两个半径为1的半球面所围成的几何体,其体积为,表面积为.
(3)到距离等于1的点所围成的几何体是一个棱长分别为1,1,2的长方体和四个高为1,底面半径为1的半圆柱以及四个半径为1的四分之一球所围成的几何体,
其体积为,
表面积为.
练习册系列答案
相关题目