题目内容
【题目】选修4-4:坐标系与参数方程
已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).
(1)写出曲线的参数方程,直线的普通方程;
(2)求曲线上任意一点到直线的距离的最大值.
【答案】(1)参数方程为,;(2).
【解析】
试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.
试题解析:
(1)曲线的普通方程为,∴,
∴,所以参数方程为,
直线的普通方程为.
(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.
练习册系列答案
相关题目