题目内容

在正三棱锥P-ABC中,E、F分别是PA、AB的中点,若∠CEF=90°,且AB=
2
,则三棱锥P-ABC外接球的表面积为
 
分析:根据题意推出EF⊥平面PAC,即PB⊥平面PAC,∠APB=∠BPC=∠APC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.
解答:精英家教网解:∵三棱锥P-ABC正棱锥,∴PB⊥AC(对棱互相垂直)∴EF⊥AC
又∵EF⊥CE而CE∩AC=C,∴EF⊥平面PAC即PB⊥平面PAC
∴∠APB=∠BPC=∠APC=90°,,将此三棱锥补成正方体,则它们有相同的外接球
∴2R=
3
,∴S=4πR2=π•(
3
2=3π,
故答案为3π.
点评:本题是基础题,考查三棱锥的外接球的表面积,考查空间想象能力,三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网