题目内容
6.设向量$\overrightarrow{{a}_{k}}$=(cos$\frac{kπ}{6}$,sin$\frac{kπ}{6}$+cos$\frac{kπ}{6}$)(k=0,1,2,…,12),则$\sum_{k=0}^{11}$(ak•ak+1)的值为$9\sqrt{3}$.分析 利用向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性即可得出.
解答 解:$\overrightarrow{{a}_{k}}•\overrightarrow{{a}_{k+1}}$=$cos\frac{kπ}{6}•cos\frac{(k+1)π}{6}$+$(sin\frac{kπ}{6}+cos\frac{kπ}{6})(sin\frac{(k+1)π}{6}+cos\frac{(k+1)π}{6})$
=$cos\frac{kπ}{6}•cos\frac{(k+1)π}{6}$+$sin\frac{kπ}{6}sin\frac{(k+1)π}{6}$+$sin\frac{kπ}{6}cos\frac{(k+1)π}{6}$+$cos\frac{kπ}{6}sin\frac{(k+1)π}{6}$+$cos\frac{kπ}{6}cos\frac{(k+1)π}{6}$
=$cos\frac{π}{6}$+$sin\frac{2k+1}{6}π$+$\frac{1}{2}(cos\frac{2k+1}{6}π+cos\frac{π}{6})$
=$\frac{3}{2}×\frac{\sqrt{3}}{2}$+$sin\frac{2k+1}{6}π$+$\frac{1}{2}cos\frac{2k+1π}{6}$,
∴$\sum_{k=0}^{11}$(ak•ak+1)=$12×\frac{3\sqrt{3}}{4}$+$(sin\frac{π}{6}$+$sin\frac{3π}{6}$+$sin\frac{5π}{6}+sin\frac{7π}{6}$+$sin\frac{9π}{6}$+$sin\frac{11π}{6}$+$sin\frac{13π}{6}$+…+$sin\frac{23π}{6})$+$\frac{1}{2}(cos\frac{π}{6}$+$cos\frac{3π}{6}$+$cos\frac{5π}{6}$+$cos\frac{7π}{6}+cos\frac{9π}{6}+cos\frac{11π}{6}$+$cos\frac{13π}{6}$+…+$cos\frac{23π}{6})$
=$9\sqrt{3}$+0+0
=$9\sqrt{3}$.
故答案为:9$\sqrt{3}$.
点评 本题考查了向量数量积运算性质、两角和差的正弦公式、积化和差公式、三角函数的周期性,考查了推理能力与计算能力,属于中档题.
A. | ∅ | B. | (2,+∞) | C. | (-2,0) | D. | (-2,0] |
A. | 1-i | B. | 1+i | C. | -1-i | D. | -1+i |
A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
A. | 3 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{3}$ |
A. | $\frac{\sqrt{7}}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{3}$ |