题目内容
【题目】如图1,四边形ABCD中AC⊥BD,CE=2AE=2BE=2DE=2,将四边形ABCD沿着BD折叠,得到图2所示的三棱锥A﹣BCD,其中AB⊥CD.
(1)证明:平面ACD⊥平面BAD;
(2)若F为CD中点,求二面角C﹣AB﹣F的余弦值.
【答案】
(1)证明:(1)∵AE⊥BD,且BE=DE,∴△ABD是等腰直角三角形,
∴AB⊥AD,又AB⊥CD,且AD,CD平面ACD,AD∩CD=D,
∴AB⊥平面ACD,
又AB平面BAD,∴平面ACD⊥平面BAD.
(2)解:(2)以E为原点,EC为x轴,ED为y轴,
过E作平面BDC的垂直为z轴,建立空间直角坐标系,
过A作平面BCD的垂线,垂足为G,根据对称性,G点在x轴上,
设AG=h,由题设知:
E(0,0,0),C(2,0,0),B(0,﹣1,0),D(0,1,0),
A( ,0,h),F(1, ,0), =( ,1,h), =(2,﹣1,0),
∵AB⊥CD,∴ =2 ﹣1=0,解得h= ,
∴A( ).
∵ =( ), =(1, ,0),
设平面ABF的法向量 =(a,b,c),
则 ,
令a=9,得 =(9,﹣6, ),
∵AD⊥AB,AD⊥AC,
∴2 =(1,﹣2, )是平面ABC的一个法向量,
∴cos< ,2 >= = = ,
∵二面角C﹣AB﹣F是锐角,
∴二面角C﹣AB﹣F的余弦值为 .
【解析】(Ⅰ)地出AB⊥AD,AB⊥CD,且AD,由此能证明AB⊥平面ACD,从而得到平面ACD⊥平面BAD.(Ⅱ)以E为原点,EC为x轴,ED为y轴,过E作平面BDC的垂直为z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AB﹣F的余弦值.
【考点精析】本题主要考查了平面与平面垂直的判定的相关知识点,需要掌握一个平面过另一个平面的垂线,则这两个平面垂直才能正确解答此题.
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:K2= ,其中n=a+b+c+d)
P(K2≥k) | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).
【题目】(满分12分)学习雷锋精神前半年内某单位餐厅的固定餐椅经常有损坏,学习雷锋精神时全修好;单位对学习雷锋精神前后各半年内餐椅的损坏情况作了一个大致统计,具体数据如下:
损坏餐椅数 | 未损坏餐椅数 | 总 计 | |
学习雷锋精神前 | 50 | 150 | 200 |
学习雷锋精神后 | 30 | 170 | 200 |
总 计 | 80 | 320 | 400 |
(Ⅰ)求:学习雷锋精神前后餐椅损坏的百分比分别是多少?并初步判断损毁餐椅数量与学习雷锋精神是否有关?
(Ⅱ)请说明是否有97.5%以上的把握认为损毁餐椅数量与学习雷锋精神有关?
参考公式:,
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |