题目内容

如图,已知二面角αPQβ的大小为60°,点C为棱PQ上一点,AβAC=2,∠ACP=30°,则点A到平面α的距离为(      )

A.1B.C.D.

C

解析试题分析:过A作AO⊥α于O,点A到平面α的距离为AO;作AD⊥PQ于D,连接OD,则AD⊥CD,AO⊥OD,∠ADO就是二面角α-PQ-β的大小为60°.∵AC=2,∠ACP=30°,所以AD=ACsin30°=2×=1,在Rt△AOD中,

考点:点、线、面间的距离计算。
点评:本题考查空间几何体中点、线、面的关系,正确作出所求距离是解题的关键,考查计算能力与空间想象能力。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网