题目内容

【题目】已知{an}是一个等差数列,且a2=1,a5=﹣5.
(Ⅰ)求{an}的通项an
(Ⅱ)求{an}前n项和Sn的最大值.

【答案】解:(Ⅰ)设{an}的公差为d,由已知条件,
解出a1=3,d=﹣2,所以an=a1+(n﹣1)d=﹣2n+5.
(Ⅱ) =4﹣(n﹣2)2
所以n=2时,Sn取到最大值4
【解析】(Ⅰ)用两个基本量a1 , d表示a2 , a5 , 再求出a1 , d.代入通项公式,即得.(Ⅱ)将Sn的表达式写出,是关于n的二次函数,再由二次函数知识可解决之.
【考点精析】本题主要考查了等差数列的通项公式(及其变式)和等差数列的前n项和公式的相关知识点,需要掌握通项公式:;前n项和公式:才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网