题目内容

【题目】当n为正整数时,函数N(n)表示n的最大奇因数,如N(3)=3,N(10)=5,…,设Sn=N(1)+N(2)+N(3)+N(4)+…+N(2n﹣1)+N(2n),则Sn=

【答案】
【解析】解:由N(x)的性质可得知,当x是奇数时,x的最大奇数因子明显是它本身.因此N(x)=x,当x是偶数时,参看下面的讨论, 因此由这样一个性质,我们就可将Sn进行分解,分别算出奇数项的和与偶数项的和进而相加,即Sn=S+S
∴S=N(1)+N(3)+…+N(2n﹣1)=1+3+…2n﹣1= =4n1
当x是偶数时,且x∈[2k , 2k+1)①当k=1时,x∈[2,4)该区间包含的偶数只有2,而N(2)=1所以该区间所有的偶数的最大奇因数之和为T1=1
②当k=2时,x∈[4,8),该区间包含的偶数为4,6,所以该区间所有的最大奇因数偶数之和为T2=1+3=4
③当k=3时,x∈[8,16),该区间包含的偶数为8,10,12,14,则该区间所有偶数的最大奇因数之和为T3=1+3+5+7=16,因此我们可以用数学归纳法得出当x∈[2k , 2k+1)该区间所有偶数的最大奇因数和Tk=4k1
∴对k从1到n﹣1求和得T1+T2+…+Tn1=
∴S=T1+T2+…+Tn1+N(2n)=
综上可知Sn=S+S=4n1+ =
所以答案是
【考点精析】通过灵活运用数列的前n项和,掌握数列{an}的前n项和sn与通项an的关系即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网