题目内容
8.已知△ABC中,AB=AC,D为△ABC外接圆劣弧$\widehat{AC}$上的点(不与点A,C重合),延长BD至E,延长AD交BC的延长线于F(1)求证:∠CDF=∠EDF;
(2)求证:AB•AC•DF=AD•FC•FB.
分析 (I)根据A,B,C,D 四点共圆,可得∠ABC=∠CDF,AB=AC可得∠ABC=∠ACB,从而得解.
(II)证明△BAD∽△FAB,可得AB2=AD•AF,因为AB=AC,所以AB•AC=AD•AF,再根据割线定理即可得到结论.
解答 证明:(I)∵A,B,C,D 四点共圆,∴∠ABC=∠CDF
又AB=AC∴∠ABC=∠ACB,
且∠ADB=∠ACB,∴∠ADB=∠CDF,
对顶角∠EDF=∠ADB,故∠EDF=∠CDF;
(II)由(I)得∠ADB=∠ABF,
∵∠BAD=∠FAB,
∴△BAD∽△FAB,
∴$\frac{AB}{AF}$=$\frac{AD}{AB}$,
∴AB2=AD•AF,
∵AB=AC,
∴AB•AC=AD•AF,
∴AB•AC•DF=AD•AF•DF,
根据割线定理DF•AF=FC•FB,
∴AB•AC•DF=AD•FC•FB.
点评 本题以圆为载体,考查圆的内接四边形的性质,考查等腰三角形的性质,考查三角形的相似,属于基础题.
A. | -$\frac{2}{3}π$ | B. | $\frac{2}{3}π$ | C. | -$\frac{5}{6}π$ | D. | $\frac{5}{6}π$ |
某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
高一学生日均使用手机时间的频数分布表
时间分组 | 频数 |
[0,20) | 12 |
[20,40) | 20 |
[40,60) | 24 |
[60,80) | 18 |
[80,100) | 22 |
[100,120] | 4 |
(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(2)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |