题目内容

已知向量
a
=(
2
cos(α+β),
2
sin(α+β))
b
=(-sinβ,cosβ)
,若向量
a
b
的夹角为
6
,且α∈(
2
,2π)
,求cos(2α+
π
4
)
的值.
分析:利用两个向量的夹角公式及α的范围求出α,可求cos2α和sin2α,利用 两角和的余弦公式求出cos(2α+
π
4
)
  的值.
解答:解:∵|
a
|=
2
,|
b
|=1,cos
6
=-
3
2
=
a
b
|
a
|•|
b
|
=
-
2
cos(α+β)sinβ+
2
sin(α+β)cosβ
2
×1

=sinα,∴sinα=-
3
2
.又α∈(
2
,2π)
,∴α=
3
. cos2α=2cos2α-1=-
1
2

sin2α=2sinα cosα=-
3
2

cos(2α+
π
4
)
=cos2αcos
π
4
-sin2αsin
π
4
=-
1
2
×
2
2
+
3
2
×
2
2
=
6
-
2
4
点评:本题考查两个向量的数量积公式,两角和差的余弦公式的应用,求出α 值是解题的关键和难点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网