题目内容

精英家教网将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足
BP
=
1
2
BA
-
1
2
BC
+
BD
,则|
BP
|2的值为(  )
A、
3
2
B、2
C、
10-
2
4
D、
9
4
分析:由已知边长为1的正方形ABCD沿对角线BD折成直二面角后,AC=BC=AB=1,即△ABC为边长为1的正三角形,则|
BP
|2=
BP
2=(
1
2
BA
-
1
2
BC
+
BD
2,由向量数量积的运算公式,我们易同|
BP
|2的值
解答:解:由题意,翻折后AC=AB=BC,
则|
BP
|2=
BP
2
=(
1
2
BA
-
1
2
BC
+
BD
2
=(
1
2
CA
+
BD
2
=
1
4
|
CA
|2+|
BD
|2+
CA
BD

|
CA
|=1
|
BD
|=
2
CA
BD

解得|
BP
|2=
9
4

故选D
点评:向量是新课程新增内容,它是重要的解题工具,同时又是新旧知识的一个重要的交汇点.向量的有关计算和解析几何、解方程(组)等知识有密切的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网