ÌâÄ¿ÄÚÈÝ
5£®ÏÂÁÐÃüÌ⣺£¨1£©${¡Ò}_{1}^{2}$$\frac{1}{x}$dx=-$\frac{1}{{x}^{2}}$|${\;}_{1}^{2}$=$\frac{3}{4}$£»£¨2£©²»µÈʽ|x+1|+|x-3|¡Ýaºã³ÉÁ¢£¬Ôòa¡Ü4£»
£¨3£©Ëæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨1£¬2£©£¬ÔòP£¨X£¼0£©=P£¨X£¾2£©£»
£¨4£©ÒÑÖªl£¬mÊÇÁ½Ìõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂÊÇÁ½¸ö²»Í¬µÄƽÃ棬Èô¦Á¡É¦Â=m£¬l¡Î¦Á£¬l¡Î¦Â£¬Ôòl¡Îm£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£¨2£©£¨3£©£¨4£©£®
·ÖÎö £¨1£©ÀûÓö¨»ý·ÖµÄ¸ÅÄî½âÌ⣮
£¨2£©º¬Á½¸ö²»¾ø¶ÔÖµµÄ²»µÈʽµÄÇó×îÖµÎÊÌ⣬ת»¯Îªa¡Ü£¨|x+1|+|x-3|£©min
£¨3£©Ëæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨1£¬2£©£¬ÀûÓÃÕý̬·Ö²¼µÄÐÔÖʽâ¾ö±¾Ìâ
£¨4£©¸ù¾ÝÏßÃæ¹ØϵÅжϼ´¿É£®
½â´ð ½â£º¶ÔÓÚ£¨1£©${¡Ò}_{1}^{2}$$\frac{1}{x}$dx=-$lnx{|}_{1}^{2}=ln2$£¬¹Ê£¨1£©´í£®
¶ÔÓÚ£¨2£©ÓÉÓÚ|x+1|+|x-3|¡Ý|£¨x+1£©-£¨x-3£©|=4£¬²»µÈʽ|x+1|+|x-3|¡Ýaºã³ÉÁ¢£¬
¡à4¡Ýa£¬¹Ê£¨2£©ÕýÈ·£¬¶ÔÓÚ£¨3£©ÓÉÕý̬·Ö²¼µÄͼÏó¿ÉÖªp£¨x£¼0£©=p£¨x£¾2£©ËùÒÔ£¨3£©ÕýÈ·£®
¶ÔÓÚ£¨4£©£¬Èôl?¦Á£¬l¡Î¦Â£¬¦Á¡É¦Â=m£¬Âú×ãÏßÃæƽÐеÄÐÔÖʶ¨Àí£¬¹Êl¡Îm£»¹Ê¢ÚÕýÈ·£»
¹Ê´ð°¸Îª£º£¨2£©£¨3£©£¨4£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¾ø¶ÔÖµ²»µÈʽ£¬º¯ÊýµÄºã³ÉÁ¢£¬¶¨»ý·Ö£¬Õý̬·Ö²¼£¬ÏßÃæ¹ØϵµÈÎÊÌ⣬ÌåÏÖÁËת»¯µÄÊýѧ˼Ï룬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªa=2$\sqrt{3}$£¬c=2$\sqrt{2}$£¬1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$£®Ôò¡ÏC=£¨¡¡¡¡£©
A£® | 30¡ã | B£® | 135¡ã | C£® | 45¡ã»ò135¡ã | D£® | 45¡ã |
10£®Èô¸´ÊýZÂú×ã$\overline Z$£¨1+i£©=2i£¬ÔòÔÚ¸´Æ½ÃæÄÚZ¶ÔÓ¦µÄµãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£® | £¨1£¬1£© | B£® | £¨1£¬-l£© | C£® | £¨-l£¬1£© | D£® | £¨-l£¬-l£© |