题目内容
【题目】已知数列的前项和为,且,记.
(1)求数列的通项公式;
(2)求数列的前项和.
【答案】(1);(2)
【解析】试题分析:(1)由,得,两式
相减得,即,经验证时也成立;(2),利用裂项相消法求和即可得结果.
试题解析:(1)当时, ,则,
当时,由,得,
相减得,即,经验证时也成立,
所以数列的通项公式为.
(2),
所以数列的前项和为:
.
【方法点晴】本题主要考查等差数列的通项与求和公式之间的关系,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:
(1) ;(2) ;
(3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
练习册系列答案
相关题目