题目内容
9.已知a,b∈R+,a+b=1,x1,x2∈R+.(Ⅰ)求$\frac{x_1}{a}+\frac{x_2}{b}+\frac{2}{{{x_1}{x_2}}}$的最小值;
(Ⅱ)求证:(ax1+bx2)(ax2+bx1)≥x1x2.
分析 (1)由题意可得$\frac{x_1}{a}+\frac{{x{\;}_2}}{b}+\frac{2}{{{x_1}{x_2}}}≥3•\root{3}{{\frac{x_1}{a}•\frac{{x{\;}_2}}{b}•\frac{2}{{{x_1}{x_2}}}}}≥3•\root{3}{{\frac{2}{{{{(\frac{a+b}{2})}^2}}}}}=3\root{3}{8}=6$,验证等号成立即可;
(2)展开已知式子左边,由基本不等式和完全平方式可得.
解答 解:(1)∵a,b∈R+,a+b=1,x1,x2∈R+,
∴$\frac{x_1}{a}+\frac{{x{\;}_2}}{b}+\frac{2}{{{x_1}{x_2}}}≥3•\root{3}{{\frac{x_1}{a}•\frac{{x{\;}_2}}{b}•\frac{2}{{{x_1}{x_2}}}}}≥3•\root{3}{{\frac{2}{{{{(\frac{a+b}{2})}^2}}}}}=3\root{3}{8}=6$
当且仅当$\frac{x_1}{a}=\frac{x_2}{b}=\frac{2}{{{x_1}{x_2}}}$时取等号,
故式子的最小值为6;
(2)∵a,b∈R+,a+b=1,x1,x2∈R+,
∴(ax1+bx2)(ax2+bx1)
=a2x1x2+abx12+abx22+b2x1x2
=(a2+b2)x1x2+ab(x12+x22)
≥(a2+b2)x1x2+2abx1x2
=(a2+b2+2ab)x1x2
=(a+b)2x1x2
=x1x2,
当且仅当x1=x2时,取等号,
∴(ax1+bx2)(ax2+bx1)≥x1x2.
点评 本题考查基本不等式求最值和基本不等式证明不等式,属中档题.
A. | $\frac{{e}^{3}}{2}$ | B. | $\frac{e}{2}$ | C. | $\sqrt{e}$ | D. | 2e |