题目内容

已知定义在(-1,1)上的函数f(x),满足f(
1
2
)=1
,并且?x,y∈(-1,1)都有f(x)-f(y)=f(
x-y
1-xy
)
成立,对于数列{xn},有x1=
1
2
xn+1=
2xn
1+
x
2
n

(Ⅰ)求f(0),并证明f(x)为奇函数;
(Ⅱ)求数列{f(xn)}的通项公式;
(Ⅲ)对于(Ⅱ)中的数列{f(xn)},证明:
n
2
-
5
6
f(x1)-1
f(x2)-1
+
f(x2)-1
f(x3)-1
+…+
f(xn)-1
f(xn+1)-1
n
2
(n∈N*).
分析:(1)先令x=y=0,解得f(0),再令x=0得f(0)-f(y)=f(-y)即f(y)+f(-y)=0由奇偶性定义判断.
(2)由x1=
1
2
xn+1=
2xn
1+
x
2
n
易知0<xn<1,由f(xn)-f(-xn)=f(
2xn
1+xn2
)
及f(x)在(-1,1)上为奇函数得f(xn+1+1)=2f(xn)再由f(x1)=1,得到f(xn)是以1为首项,2为公比的等比数列,进而可求解.
(3)
f(x1)-1
f(x2)-1
+
f(x2)-1
f(x3)-1
+…+
f(xn)-1
f( xn+1)-1
=
0
2-1
+
2-1
22-1
+…+
2n-1-1
2n+1-1 
,由
2n-1
2n+1-1
1
2
可证右面,进而可得答案.
解答:解:(1)当x=y=0时,f(0)=0,再令x=0得f(0)-f(y)=f(-y)即f(y)+f(-y)=0
∴f(x)在(-1,1)上为为奇函数.
(2)由x1=
1
2
xn+1=
2xn
1+
x
2
n
易知0<xn<1
∵f(xn)-f(-xn)=f(
2xn
1+xn2
)
且f(x)且f(x)在(-1,1)上为奇函数
∴f(xn+1)=2f(xn),f(x1)=1
∴f(xn)是以1为首项,2为公比的等比数列
∴f(xn)=2n-1
(3)
f(x1)-1
f(x2)-1
+
f(x2)-1
f(x3)-1
+…+
f(xn)-1
f( xn+1)-1
=
0
2-1
+
2-1
22-1
+…+
2n-1-1
2n+1-1 
1
2
+
1
2
+…+
1
2
=
n
2
点评:本题主要考查抽象抽象函数判断奇偶性及求解析式,进而转化为数列模型研究等比数列求和解决恒成立问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网