题目内容
若直线与曲线有两个不同的交点,则k的取值范围是_____
【解析】略
(本小题满分14分)已知函数,当时,取得极小值.(1)求,的值;(2)设直线,曲线.若直线与曲线同时满足下列两个条件:①直线与曲线相切且至少有两个切点; ②对任意都有.则称直线为曲线的“上夹线”.试证明:直线是曲线的“上夹线”.(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
设函数, (Ⅰ)求的单调区间;
(Ⅱ)若方程在上有两个实数解,求实数t的取值范围;
(Ⅲ)是否存在实数,使曲线与曲线及直线所围图形的面积为,若存在,求出一个的值,若不存在说明理由.