题目内容
(本题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.
(1)求甲,乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.
(1)从甲组抽取2名,从乙组抽取1名;
(2)从甲组抽取的工人中恰有1名女工的概率为
(3)X的分布列为
解析
(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸 | ||||||
甲机床零件频数 | 2 | 3 | 20 | 20 | 4 | 1 |
乙机床零件频数 | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
(本小题满分12分)
2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5(PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5(微克/立方米) | 频数(天) | 频率 |
第一组 | (0,15] | 4 | 0.1 |
第二组 | (15,30] | 12 | 0.3 |
第三组 | (30,45] | 8 | 0.2 |
第四组 | (45,60] | 8 | 0.2 |
第三组 | (60,75] | 4 | 0.1 |
第四组 | (75,90) | 4 | 0.1 |
(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;
(3)将频率视为概率,对于去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为,求的分布列及数学期望.
甲、乙两人在相同条件下各射击10次,每次命中的环数如下:
甲 | 8 | 6 | 7 | 8 | 6 | 5 | 9 | 10 | 4 | 7 |
乙 | 6 | 7 | 7 | 8 | 6 | 7 | 8 | 7 | 9 | 5 |
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;
公式:
(3)根据计算结果,估计一下两人的射击情况.
(本小题满分13分)2012年3月2日,国家环保部发布了新修订的《环境空气质量标准》.其中规定:居民区中的PM2.5年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米. 某城市环保部门随机抽取了一居民区去年40天的PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5(微克/立方米) | 频数(天) | 频 率 |
第一组 | (0,15] | 4 | 0.1 |
第二组 | (15,30] | 12 | |
第三组 | (30,45] | 8 | 0.2 |
第四组 | (45,60] | 8 | 0.2 |
第五组 | (60,75] | 0.1 | |
第六组 | (75,90) | 4 | 0.1 |
(Ⅱ)完成相应的频率分布直方图.
(Ⅲ)求出样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由.
(本小题满分12分)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如右图所示.
(1)下表是年龄的频数分布表,求正整数的值;
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人数 | 50 | 50 | 150 |
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
17.有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表:
| 优秀 | 非优秀 | 总计 |
甲班 | 10[来源:学科网ZXXK] | | |
乙班 | | 30 | [来源:学#科#网] |
合计 | | | 105 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”。
(3)若按下面的方法从甲班优秀的学生抽取一人;把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取的人的序号,试求抽到6或10的概率。